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Abstract
Although both diet-induced obesity and psychological stress are recognized as sig-
nificant independent contributors to cardiometabolic and behavioral disorders, our 
understanding of how these two disorders interact and influence cardiometabolic 
risk and myocardial ischemic tolerance is limited. The aim of this study was to assess 
the combined effects of an obesogenic diet and psychological stress on cardiometa-
bolic risk factors (body weight, dyslipidemia, insulin sensitivity) and postischemic 
cardiovascular outcomes. C57Bl/6J mice (n = 48) were subject to a combination of 
22 weeks of western diet (WD) feeding and chronic restraint stress (CRS) for the 
last 4 weeks. Metabolic and behavioral changes were assessed using glucose toler-
ance tests and open field tests (OFTs), respectively. After 22 weeks, cardiac function 
and ischemic tolerance were assessed in Langendorff perfused hearts. WD feeding 
increased body weight and worsened blood lipids and insulin sensitivity. WD-fed 
mice also exhibited reduced exploratory behavior within the OFT. CRS reduced 
body weight and increased locomotion in both dietary groups and had differential 
effects on fasting glucose metabolism in the two dietary groups while not impact-
ing non-fasting insulin. Although the WD only marginally reduced reperfusion left 
ventricular developed pressure recovery, CRS worsened reperfusion diastolic dys-
function in both dietary groups. Interestingly, despite WD+CRS animals exhibiting 
improved cardiometabolic parameters compared to the WD group, these changes 
did not translate to marked improvements to postischemic cardiac outcomes. In 
conclusion, in this study, combined WD feeding and CRS did not act synergistically 
to worsen cardiometabolic risk factors but instead improved them. Despite these 
cardiometabolic improvements, WD+CRS increased reperfusion end diastolic pres-
sure which may be indicative of worsened ischemia/reperfusion injury.
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1   |   INTRODUCTION

In recent decades, the incidence of obesity and depression 
has increased to the extent that they now represent two 
of the most pressing and costly chronic health conditions 
globally. The associated burden of disease is significant 
for both the individual and the health care system, par-
ticularly given the recognized association between these 
disorders and the risk for additional comorbidities such 
as coronary heart disease, type-2 diabetes, and neurocog-
nitive decline that all contribute to premature mortality 
(Abdelaal et al., 2017; Andre et al., 2014; Gheshlagh et al., 
2016; Gilman et al., 2017). Indeed, recent studies link 
stress to exacerbated metabolic syndrome in obesity and 
posits that the two conditions may act synergistically to 
promote disease (Chandola et al., 2006; Janczura et al., 
2015; Rosengren et al., 2004). Importantly, both obesity 
and chronic psychological stress increase the risk for myo-
cardial infarction (Arnold et al., 2012; Jackson et al., 2018; 
Yusuf et al., 2005). Considering the increasing prevalence 
of individuals with multimorbidity, and an established bi-
directional relationship between obesity and depression, 
our understanding of how these two chronic conditions 
interact to impact myocardial ischemic outcomes remains 
limited (Harrison et al., 2017; Mannan et al., 2016).

Experimental evidence suggests that dyslipidemia, in-
sulin resistance, inflammation, and oxidative stress are 
key mediators of ischemic intolerance in obesity (Liu & 
Lloyd, 2013; Morel et al., 2003; Thakker et al., 2006; Toit 
et al., 2008). Data from human studies support a role for 
psychological stress in the promotion of weight gain, insu-
lin resistance, and inflammation, and thus one could posit 
that chronic stress could synergistically worsen ischemic 
intolerance in obesity (Cuevas et al., 2019; Harris et al., 
2017; Miller et al., 2008). Studies assessing the combined 
effects of diet-induced obesity (DIO) and psychological 
stressors in animal models yield mixed results in terms of 
metabolic outcomes. This includes reports of both adverse 
and beneficial effects on cardiometabolic risk factors such 
as body weight, glycemic handling, and circulating insulin 
(Aslani et al., 2015; Finger et al., 2012; Fu et al., 2009; Kai 
et al., 2000; Sousa Rodrigues et al., 2017). Few studies have 
assessed interactions between DIO and psychological 
stress in governing cardiovascular phenotype and disease 
pathogenesis (Agrimi et al., 2019; Crestani, 2016; Du Toit 
et al., 2020). Thus, the relationship between metabolic ho-
meostasis and cardiovascular outcomes within the context 
of chronic stress and DIO remains enigmatic.

In our previous work, we demonstrated a synergistic 
worsening of metabolic homeostasis with a concurrent 
reduction in myocardial ischemic tolerance in mice sub-
ject to 12 weeks of western diet (WD) feeding and chronic 
restraint stress (CRS). However, considering the mixed 

findings in the field regarding the metabolic outcomes 
in models combining diet and stress, we aimed to inves-
tigate the effects of a more robust model of CRS on our 
established model of DIO. We hypothesized that the com-
bination of a WD and CRS would act additively to worsen 
metabolism, behavioral markers of anxiety, and myocar-
dial susceptibility to ischemic/reperfusion (I/R) injury 
as per our previous findings. Contrary to the findings of 
our previous study, we found evidence of improvements 
to cardiometabolic risk factors (body weight, lipids, and 
insulin sensitivity) in the WD+CRS groups in the current 
study utilizing a more severe CRS intervention. These 
changes were however not accompanied by similar im-
provements to postischemic cardiac outcomes, suggesting 
a disconnection between metabolism and cardiovascular 
outcomes in certain models of stress.

2   |   METHODS

2.1  |  Animals and experimental 
procedure

Forty-eight C57Bl/6J male mice at 8  weeks of age were 
purchased from the Animal Resource Centre, Western 
Australia and were housed in an environmentally con-
trolled animal care facility for 1 week. After acclimatiza-
tion, the mice were housed in cages of six at 22°C under 

New findings
•	 What is the central question of this study?
Both diet-induced obesity and chronic stress are 
associated with metabolic, behavioral, and car-
diovascular abnormalities; however, our under-
standing on how these two risk factors interact 
to influence ischemic tolerance and postischemic 
cardiac outcomes is limited.
•	 What is the main findings and its importance?
Using C57Bl/6J mice subject to both a chronic 
western diet and chronic restraint stress, we 
show improvements to body weight and glucose 
tolerance in obese mice subject to stress. These 
metabolic improvements did however not trans-
late into improved myocardial ischemic tolerance 
but rather worsened select functional outcomes. 
These outcomes suggest stress may cause a disso-
ciation between traditional cardiometabolic risk 
factors thought to decrease myocardial ischemic 
tolerance and post-myocardial infarct outcomes 
via yet unresolved mechanisms.
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a 12-h-light/dark cycle with free access to food and water. 
Mice were randomly divided into two dietary groups and 
were provided with either a control or WD chow ad li-
bitum for a period of 22  weeks (Figure 1). The Control 
group (n  =  24) were maintained on a standard rodent 
chow (Specialty Feeds): The WD group (n = 24) was fed 
a diet of standard rodent chow supplemented with re-
fined sugar, animal fat, and condensed milk in order to 
promote DIO as per our previous work. (Du Toit et al., 
2020). The WD was modeled to equate to human WD (49% 
from carbohydrate, 35% from fat, and 16% from protein) 
in the US population (NHANES, 2013–2014). Content 
and nutritional details of the control and WD diet can 
be found in Table 1. After 18-weeks, mice from each di-
etary group (n = 12) were randomly allocated to CRS for 
the final 29 days of the study. The remaining mice from 
each dietary group (n = 12 each) were handled for an ad-
ditional 5 min but not subjected to the stressor. The four 
experimental groups were: (1) Control; (2) Control+CRS; 
(3) WD; and (4) WD+CRS. Prior to (Week 15) and after 
the 4-week CRS period (Week 21) mice were subject to an 
open field test (OFT) and a glucose tolerance test (GTT) 
to assess diet and stress-induced changes to behavior and 
glucose handling.

At the end of the experimental period (Week 22), mice 
were anesthetized between 08:00 and 10:00  h using so-
dium pentobarbital (60  mg  kg−1 i.p.) and euthanized by 
removal of the heart and subsequent exsanguination. 
Non-fasted blood glucose was determined using tail blood 
and an Accu-check II glucometer (Roche Diagnostic). In a 
subset of mice from each group (n = 8/group), hearts were 
removed and Langendorff perfused to assess cardiac func-
tion and responses to ischemic insult. Blood was drawn 
immediately from the thoracic cavity after heart excision 
for further metabolic and corticosterone analysis.

2.2  |  Chronic restraint stressor

For mice allocated to the psychological stressor groups, 
CRS was used as described previously to induce chronic 
mild stress (Bowers et al., 2008; Chiba et al., 2012). Mice 
were restrained by placing individual animals in acrylic 
chambers for 1 h day−1 for 3 weeks and 5 days. All mice 
were weighed daily during the 29 days of CRS and moni-
tored daily for behavioral abnormalities or signs of dis-
tress throughout the final 4 weeks. The stressor was not 
applied on days when behavior testing or GTT analyses 
were performed, and was terminated 2 days prior to ani-
mal euthanasia, blood collection, and heart perfusions.

2.3  |  Body weight and GTTs

Mice were weighed weekly during feeding and daily during 
the CRS period using an electronic laboratory scale. Glucose 
tolerance was assessed prior to and following the 4-week 
CRS period using a GTT. Mice were fasted for 4 h prior to 
GTTs. Blood was obtained via tail tipping and blood glu-
cose determined using an Accu-check II glucometer (Roche 
Diagnostic). A 20% (2 g kg−1) glucose bolus was adminis-
tered via intraperitoneal injection and blood glucose levels 
recorded at 15, 30, 60, 120, 180  min post injection. Total 
area under the glucose curve (AUC) was calculated using all 
time-points as a measure of glucose tolerance (GTT-AUC).

2.4  |  Open field test

Locomotor activity and exploratory behavior were assessed 
in all mice prior to and following the 4-week CRS period, 
during a 30-min period in an OFT arena. The OFT is a 

F I G U R E  1   Schematic of 22-week 
study design. At endpoint, blood was 
collected from the thoracic cavity for 
assessment of circulating metabolic 
markers. In a subset of mice (n = 8 per 
group), hearts were excised and lung 
onto a Langendorff perfusion system to 
assess myocardial tolerance to ischemic/
reperfusion injury. CRS, chronic restraint 
stress; GTT, glucose tolerance test; OFT, 
open field test; WD, western diet
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validated tool for the assessment of anxiety-like behavior 
in a foreign environment (Katz et al., 1981; Sestakova et al., 
2013) and was used to determine the impact of the WD 
and CRS intervention on anxiety-like indices. The arena 
(70 × 70 × 56 cm) floor was subdivided into a 4 × 4 marked 
grid and a center square, with an overhead digital camera 
recording all activity. Briefly, mice were transported to the 
testing room and habituated to the arena room for 30 min 
prior to testing. The arena was cleaned with 80% ethanol 
(w/v) between each test. The mouse was placed within 
the center square of the arena and the test began when the 
mouse left the center square. Videos were analyzed using 
a custom animal tracking software (Hatton-Jones et al., 
2021). The primary variables assessed using tracking soft-
ware included horizontal locomotive activity (distance in 
cm), and exploratory behavior via center square entries 
(CSE) and center square duration (CSD).

2.5  |  Cardiac function and 
ischemic tolerance

After anesthesia, hearts were excised into ice-cold perfu-
sion fluid, the aorta was cannulated and hearts mounted 
on a Langendorff perfusion system (Reichelt, Willems, 
Hack, Peart & Headrick, 2009). Hearts were perfused with 
modified Krebs–Henseleit buffer (119 mM NaCl, 11 mM 
glucose, 22 mM NaHCO3, 4.7 mM KCl, 1.2 mM MgCl2, 
1.2 mM KH2PO4, 1.2 mM EDTA, 0.5 mM, and 2.5 mM 
CaCl2) bubbled with 95% O2/5% CO2 at 37°C (pH 7.4) and 
were immersed in perfusion fluid a 5-ml water jacketed 
organ bath (also set to 37°C).

To measure contractile function a fluid-filled balloon 
was inserted into the left ventricle and inflated to an end-
diastolic pressure (EDP) of 5 mmHg during stabilization. 
An ultrasonic flow-probe in the aortic perfusion line, con-
nected to a T206 flow meter, provided a constant measure 
of coronary flow rate (Transonic Systems Inc.). Hearts were 
stabilized for 20 min and then switched to ventricular pac-
ing at 7 Hz (SD9 stimulator; Grass Instruments) for 10 min 
prior to ischemia-reperfusion. Global normothermic isch-
emia was induced for 25 min, followed by 45 min of aerobic 

reperfusion. Time spent in ischemia was chosen based on 
previous work done by our lab and others (Du Toit et al., 2020; 
Wang et al., 2001). Peak systolic and EDP, heart rate, flow, 
and + and −dP/dt were continuously monitored at 1 kHz 
using an eight channel MacLab system (ADInstruments 
Pty Ltd.) connected to an Apple iMac computer. Thermal 
probes connected to a three-channel Physitemp TH-8 digi-
tal thermometer monitored the temperatures of the perfu-
sate and water bath (Physitemp Instruments Inc.; Reichelt, 
Willems, Hack, Peart & Headrick, 2009).

2.6  |  Blood serum analyses

To assess the effects of the WD and psychological stress 
on cardiometabolic risk factors, non-fasted blood was 
collected at sacrifice to assess circulating levels glucose, 
triglycerides, insulin, and corticosterone. Glucose was 
determined immediately in whole blood using an Accu-
check II glucometer (Roche Diagnostic). Serum samples 
were stored at −80°C for subsequent metabolic analyses. 
Serum triglycerides were assayed using a triglyceride 
quantification colorimetric kit (Biovision Inc.), serum 
insulin using an ultra-sensitive mouse insulin ELISA kit 
(Crystal Chem), and corticosterone using a Corticosterone 
ELISA kit (Enzo LifeScience), according to manufactur-
er's instructions. The balance between circulating insulin 
and glucose levels was determined using the homeostasis 
model assessment of insulin resistance (HOMA-IR), how-
ever as non-fasted blood samples were utilized, it can only 
be used to infer insulin resistance.

2.7  |  Statistical Analysis

Data were analyzed using GraphPad Prism 8 and presented 
as means ± SD. Normality was assessed using a Shapiro–
Wilk tests with non-normally distributed data log trans-
formed prior to analysis. Total area under the curve was 
calculated using GraphPad Prisms ‘Area Under the Curve’ 

HOMA IR=
[mgdl−1 glucose×μUml−1 insulin]

405

T A B L E  1   Dietary content and ingredient breakdown

Source

Macronutrient breakdown (%kcal)

Carbohydrates Fats Protein

Standard rodent chow Speciality feeds; meat free rat and mouse diet 
(wheat, barley, lupins, soya meal, fish meal, 
mixed vegetable oils)

64.1 14.4 21

Western diet Standard rodent chow (800 g) supplemented with 
125 g of animal fat, 140 g of refined sugar, and 
794 g of condensed milk

56.7 30.2 11.3
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function and the blood glucose levels at 0, 15, 30, 60, 120, 
and 180 min. The effect of the WD on metabolic and be-
havioral markers was compared between groups (Control 
vs WD, n = 24/group) prior to the 4-week CRS period using 
an independent sample T-test. A two-factor ANOVA was 
used to compare the impacts of time (pre-CRS vs. post-
CRS) and the impact of diet (Control vs. WD) and stress 
(−CRS vs. +CRS) on metabolic, behavioral, and cardio-
vascular endpoints. For all two-way ANOVA, a Sidak post 
hoc test was performed subsequent to identifying signifi-
cant overall effects. A Pearson's correlation was performed 
to explore the relationship between end-point variables 
(body weight, fasting plasma glucose, GTT-AUC, and is 
presented as r(df) = r statistic, p value). Differences with a 
p < 0.05 were considered to be statistically significant.

3   |   RESULTS

3.1  |  Effects of a control and WD on body 
weight, glycemic control, and behavior

Both dietary groups gained body weight over the feed-
ing period prior to CRS exposure. The rate of weight 

gain accelerated during weeks 8–17 in the WD group 	
(Figure 2a). The WD worsened glycemic control, with sig-
nificant elevations in fasting plasma glucose (p  <  0.0001; 
Figure 2b) and GTT-AUC (p  <  0.0001; Figure 2c) com-
pared to control animals. There was no difference in total 
distance travelled between WD and control animals prior 
to exposure to CRS (p = 0.12; Figure 2d). However, CSD 
(p = 0.014; Figure 2e) and CSE (p = 0.0079; Figure 2f) were 
significantly lower in the WD-fed animals.

3.2  |  Effects of CRS on body weight, 
glycemic control, and circulating 
metabolic markers

Exposure to CRS resulted in an acute drop in body weight 
in both dietary groups, with the WD+CRS animals losing 
significantly more weight after the initial 2 weeks of CRS 
compared to the Control+CRS group (7% weight loss vs. 
3% weight loss; p = 0.0004; Figure 3a). After 2 weeks of 
CRS, body weight stabilized in both dietary groups with 
no further weight gain observed in the final 2  weeks of 
the study, despite maintenance of WD feeding in rel-
evant groups. Body weight at the end of the combined 

F I G U R E  2   Change in body weight, glycemic control, and anxiety-like behavior in response to dietary intervention. (a) Weekly body 
weights for male C57BL/6 mice on a control diet or WD for 18 weeks. (b) Glucose tolerance test results after a glucose bolus i.p. injection 
after a 4-h fast. (c) Total-AUC for the 180-min GTT after 15 weeks of control diet or WD. Behavior was assessed using the OFT and included: 
(d) total distance travelled; (e) center square duration; and (f) center square entries. Data expressed as means ± SD (n = 24 per group). A 
student's t-test was used for statistical and * indicates degree of significance. *Significantly different from control group (no CRS). AUC, 
area under the glucose curve; CRS, chronic restraint stress; GTT, glucose tolerance test; OFT, open field test; WD, western diet. *p < 0.05, 
**p < 0.01, ***p < 0.001, ****p < 0.0001
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intervention reveals a main effect of WD feeding [Diet; 
F(1, 44)  =  33.05; p  <  0.0001; Figure 3b] with both the 
WD and WD+CRS groups maintaining significantly 
heavier body weights than the control group (p < 0.0006 
and p  <  0.0004, respectively). Overall, both WD groups 
were significantly heavier than the Control group 	
(Table 2) with the WD causing an approximately 15% 
increase in body weight. This was despite the fact that 
several WD animals (n = 4) failed to gain more than 10% 
body weight compared to the Control group.

Glucose tolerance curves reveal minor improvements 
to glycemic handling within the WD+CRS group com-
pared to the WD group 30-min after the glucose bolus in-
jection (Figure 4b; p = 0.02). This resulted in a significant 
14% reduction of GTT-AUC in the WD+CRS group over 
the CRS period (Figure 4c; p  =  0.0006). Interestingly, a 
similar reduction in GTT-AUC was noted with the control 
group (p = 0.01), but not within the Control+CRS group 
or WD group (Figure 4c). A generalized decrease in fasting 
plasma glucose concentrations was noted over the CRS 
period [Time; F(1, 42) = 8.24; p = 0.006; Figure 4d].

At the study endpoint, fasting plasma glucose 	
levels were affected by both interventions [Diet  ×  CRS; 	
F(1, 42) = 10.80; p  =  0.0021; Table 2) with significantly 
higher levels observed in Control+CRS group (p = 0.02), 
the WD group (p  <  0.0001), and WD+CRS group 
(p  =  0.0006) compared to the Control group. Similarly, 
WD feeding was also associated with a higher AUC 
[Diet: F (1, 42) = 48.01; p < 0.0001; Table 2] with signifi-
cantly higher levels noted in both the WD and WD+CRS 
groups compared to the Control group (p  <  0.0001 and 
p = 0.0025, respectively). A minor interaction with both 
interventions was noted for GTT-AUC [Diet  ×  CRS: 	
F(1, 42) = 4.24; p = 0.05] with a trend for improved glucose 

tolerance noted within WD+CRS group compared to the 
WD group (p = 0.09; Table 2).

Blood triglyceride levels were significantly increased 
by WD feeding [Diet: F(1, 35) = 8.39; p < 0.01], with post 
hoc analysis revealing the WD group had significantly 
higher triglyceride levels when compared to the Control 
group (p = 0.0094; Table 2). Circulating triglyceride lev-
els were not altered in CRS animals compared to their 
respective dietary controls, however, a trend for an inter-
active effect was observed [Diet × CRS: F(1, 35) = 3.80; 
p = 0.06]. Blood insulin was significantly elevated by WD 
feeding [Diet: F(1, 41) = 49.95; p < 0.0001; Table 2], with 
elevated levels observed in both WD and WD+CRS groups 
when compared to Control (p < 0.0001 and p < 0.0001, 
respectively). The WD had a modest effect on non-fasting 
glucose [Diet: F(1, 41) = 4.93; p = 0.02; Table 2) with sig-
nificantly higher levels observed in the WD group com-
pared to the Control+CRS group (p = 0.02), but not the 
Control group (p = 0.07). A similar pattern of change to 
insulin was noted in HOMA-IR with a strong effect of 
WD-feeding [Diet: F(1, 40) = 45.5; p < 0.0001; Table 2]. 
No significant differences in baseline corticosterone con-
centrations were observed between dietary groups or in 
response to CRS (Table 2). Correlation analysis revealed 
a strong relationship between body weight and fasting 
plasma glucose (Figure 5a), GTT-AUC (Figure 5b), and in-
sulin concentrations (Figure 5c).

3.3  |  Effect of CRS on animal behavior

Some aspects of behavior changed with CRS. Notably, we 
saw an increase in total distance travelled after the two 
dietary groups were subjected to the CRS period [Time: 

F I G U R E  3   The effect of CRS on body weight in the two dietary groups. (a) Body weights assessed weekly during the CRS period 
(from 18 to 22 weeks of feeding) in both stressed and non-stressed animals. (b) Endpoint body weights after the combined dietary 
and stress interventions. Data expressed as means ± SD (n = 12 per group). A two-way ANOVA followed by a Sidak post hoc used for 
statistical analysis. CRS, chronic restraint stress. *Significantly different from Control group (No CRS). *p < 0.05, **p < 0.01, ***p < 0.001, 
****p < 0.0001
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F(1,38)=23.80; p<0.0001; Figure 6a]. This was most no-
table for the Control+CRS (p  =  0.004) and WD+CRS 
group (p = 0.03). Both CSD [Group effect: F(3, 43) = 3.90; 
p = 0.015; Figure 6b] and CSE [Group effect: F(3, 43) = 
4.40; p = 0.023; Figure 6c] were significantly lower in the 
WD animals, but significant changes in response to CRS 
were not observed for either control diet or WD animals.

At the study endpoint nonsignificant reductions in total 
distance travelled among WD animals was still evident 
[Diet: F(1, 41) = 3.84; p = 0.056; Figure 6d]. In contrast, 
CRS groups were associated higher total distance trav-
elled [CRS: F(1, 41) = 3.66; p = 0.06; Figure 6d]. Similarly, 
CSD tended to be lower [Diet: F(1, 38) = 3.42; p = 0.07; 	
Figure 6e] and CSE were significantly lower [Diet: F(1, 41) 
= 6.76; p = 0.01; Figure 6f] in WD animals. Post hoc re-
veals that exposure to CRS did not result in significant dif-
ferences in behavioral measures when compared to their 
respective dietary controls.

3.4  |  Effect of a WD diet and CRS on 
myocardial function and tolerance to I/R

Baseline cardiac function prior to I/R, and functional re-
covery after I/R, was assessed using a Langendorff heart 
perfusion model. As expected, cardiometabolic risk fac-
tor values for the subgroup of animals that was randomly 
selected for heart perfusions mirrored those documented 
for the four larger groups of mice used in the whole study 
(Table 2; Table S1) . Baseline cardiac function was compa-
rable between groups (Table 3). Significantly higher heart 
weights were noted in both the WD and WD+CRS groups 

[Diet: F(1, 25) = 9.83; p = 0.00] compared to the control 
(~20% vs. control), however, the heart-to-body ratio was 
unaffected by either the WD or CRS intervention.

Functional recovery was assessed 45-min after reper-
fusion. Reperfusion left ventricular developed pressure 
(LVDevP) recovery was not affected by the WD nor CRS 
intervention when compared with the Control group 
(Figure 7a). This lack of an effect with the WD may have 
been due to the inclusion of several low weight nonre-
sponsive mice in the WD group. This lack of responsive-
ness to the obesogenic diet is highlighted in Figure 7b,c 
with low-weight, glucose tolerant WD mice showing 
no change in LVDevP recovery and high weight, glu-
cose insensitive mice showing poor LVDevP recovery. 
Interestingly, although a strong inverse relationship be-
tween LVDevP recovery and GTT-AUC was observed in 
the WD mice (Figure 7b), there was no such relation-
ship observed in WD+CRS mice for LVDevP recovery 
and GTT-AUC (Figure 7b) or body weight (Figure 7c). 
End diastolic pressure during reperfusion was signifi-
cantly higher in animals subjected to CRS [Stress: F(1, 
25) = 7.74; p = 0.01; Figure 7d], however post hoc reveals 
no group differences. Furthermore, dP/dT max recovery 
was significantly lower in the WD animals [Diet: F(1, 
25) = 5.12; p = 0.05; Figure 7e]. Time spent in postisch-
emic ventricular fibrillation was significantly higher in 
WD animals [Diet: F(1, 25) = 5.01; p = 0.03; Figure 7f], 
and a nonsignificant increase for greater time spent in 
ventricular fibrillation was noted in the WD+CRS com-
pared to the Control group (p = 0.09). No significant ad-
ditive effects of WD and CRS were noted in the functional 
indices assessed.

T A B L E  2   Metabolic parameters at the study endpoint after the combined WD and CRS intervention

Mean ± SD

Control
n = 12

Control+CRS
n = 12

WD
n = 12

WD+CRS
n = 12

Body weight (g)

Body weight (Week 17) 30.3 ± 1.5 31.0 ± 1.90 36.7 ± 5.0*** 37.9 ± 3.5****

Body weight (Week 21) 30.9 ± 1.2 30.6 ± 1.5 36.7 ± 5.5*** 35.9 ± 3.2**

GTT (Week 21)

Fasting plasma glucose (mmol/L) 7.3 ± 1.0 8.9 ± 1.1* 10.3 ± 1.4**** 9.5 ± 1.4***

Total area under the curve 1614 ± 179.1 1668 ± 74.8 2179 ± 351.0**** 1965 ± 169.9**

Serum (endpoint)

Triglycerides (µM) 112.5 ± 60.2 144.9 ± 39.9 183 ± 38.2** 158.6 ± 42.5

Insulin (µU/ml) 19.2 ± 7.8 23.7 ± 9.0 54.3 ± 25.7**** 46.3 ± 11.8****

Non-fasted glucose (mmol/L) 10.9 ± 1.9 10.4 ± 1.8 12.5 ± 1.6 11.0 ± 1.0

HOMA-IR 9.2 ± 3.9 11.1 ± 4.3 30.2 ± 4.3**** 23.3 ± 6.2***

Corticosterone (pg/ml) 47.0 ± 46.7 62.3 ± 42.1 51.9 ± 28.3 49.2 ± 30.9

Note: Significantly different from Control; *p < 0.05, ** p < 0.01, ***p < 0.001, ****p < 0.0001.
Abbreviations: GTT, glucose tolerance test; HOMA-IR, Homeostatic Model Assessment for Insulin Resistance.
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4   |   DISCUSSION

This study investigated the effects of a WD and CRS, on 
behavior, cardiometabolic risk factors and myocardial 
response to I/R in a murine model. Our data indicates 
WD+CRS mice exhibit improvements in glucose toler-
ance while increasing myocardial susceptibility to I/R 
injury. Primary findings of this study are: (1) the WD pro-
motes obesity and glucose intolerance; (2) CRS improved 

body weight and body weight gain in both control and 
WD mice; (3) CRS improved glucose tolerance in WD-fed 
animals with no alterations to insulin levels; (4) the WD 
induced robust changes in exploratory behavior which 
was lost when the WD was combined with CRS; (5) de-
spite WD+CRS mice exhibiting a more favorable cardio-
metabolic risk profile than WD-fed animals, this did not 
translate into improvements in postischemic myocardial 
outcomes.

F I G U R E  4   Measures of glycemic control before (pre; 15 weeks feeding) and after (post; 21 weeks feeding) the CRS period. Glucose 
tolerance test results after a glucose bolus i.p. injection after a 4-h fast (a) before the stressor and (b) after the stressor. (c) Fasting plasma 
glucose prior to and after the CRS period. (d) GTT AUC prior to and after the CRS period. A two-way ANOVA followed by a Sidak post 
hoc was used for statistical analysis. Significantly different from control group (no CRS). AUC, area under the glucose curve; CRS, chronic 
restraint stress; GTT, glucose tolerance test; OFT, open field test; WD, western diet. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. 
Significantly different from previous time point. #p < 0.05, ##p < 0.01, ###p < 0.001. WD significantly different from WD+CRS. †p < 0.05

F I G U R E  5   Correlation analysis after the CRS describing the relationship between body weight and (a) Fasting plasma glucose, (b) Total 
area under the curve of the GTT, and (c) circulating insulin in non-fasted animals. A Pearson's correlation was used to determine statistical 
correlations between variables. CRS, chronic restraint stress; GTT, glucose tolerance test
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4.1  |  Effect of a WD and CRS on 
cardiometabolic risk factors

In the current study, the WD-induced DIO with metabolic 
dysregulation, evidenced by increased body weight, insu-
lin insensitivity, hyperlipidemia, and hyperinsulinemia. 
However, several mice in this group were non-responders 
and failed to become obese. These animals only displayed 
moderate increases in body weight and cardiometabolic 
risk markers. This phenomenon of responders and non-
responders to obesogenic diets has been characterized in 

the literature (Dourmashkin et al., 2006; Tulipano et al., 
2004) and limits our ability to appropriately interpret 
the effects of obesity on cardiometabolic and behavioral 
outcomes.

Accumulating evidence highlights the potential for 
crosstalk and synergistic interactions between obesogenic 
feeding and chronic stress in the development of disease 
(Kelly & Ismail, 2015; Ortiz & Sapunar, 2018; Ulrich-Lai 
et al., 2015). Contrary to this, there is also evidence that 
palatable diets may be beneficial in models of stress (Fleur 
et al., 2005; Maniam & Morris, 2010), and that stress can 

F I G U R E  6   Open-field behavior 
before (pre; 17 weeks of feeding) and after 
(post; 21 weeks of feeding) the chronic 
restraint stress (CRS) period in both 
stressed and un-stressed animals. (a) 
Total distance travelled; (b) center square 
duration; (c) center square entries. In 
addition, the same behavioral parameters 
are shown for each group at the end of 
the experimental protocol, including: (d) 
total distance travelled; (e) center square 
duration; (f) C center square entries. 
Data expressed as means ± SD (n = 10–
12). A two-way ANOVA followed by a 
Sidak post hoc was used for statistical 
analysis. $ represents a significant main 
effect of the intervention. * and # indicate 
significant post hoc differences. Different 
from Control group (No CRS). **p < 0.01. 
#Different from previous time point. 
#p < 0.05, ##p < 0.01

T A B L E  3   Baseline cardiovascular function in Langendorff perfused hearts

Mean ± SD (n = 5–8 per group)

Control
n = 5

Control + CRS
n = 8

WD
n = 8

WD + CRS
n = 8

Heart weight (g) 161 ± 29.9 182.5 ± 21.6 204.5 ± 31* 196.9 ± 20.1*

Heart-to-body weight ratio 5.2 ± 1.0 6.0 ± 0.5 5.5 ± 0.9 5.40 ± 0.4

Coronary flow (ml min−1) 4.2 ± 2.1 3.3 ± 1.1 4.0 ± 1.2 5.0 ± 1.7

Diastolic pressure (mmHg) 3 ± 3 5 ± 4 4 ± 5 6 ± 1

Systolic pressure (mmHg) 120 ± 20 116 ± 24 107 ± 25 124 ± 15

Developed pressure (mmHg) 118 ± 22 111 ± 26 103 ± 27 117 ± 15

Note: Significantly different from Control (No CRS). *p < 0.05.
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ameliorate the metabolic dysregulation observed in DIO 
models (Bates et al., 2007; Kai et al., 2000). The current 
study found that the introduction of CRS caused an initial 
drop in body weight in control and WD animals, with a 
sustained slowing of weight gain during the 4  weeks of 
CRS exposure. These observations are consistent with the 
literature with uncontrollable stress inducing an anorexi-
genic phenotype in rodent models, resulting in weight loss 
(Bruder-Nascimento et al., 2013; Fu et al., 2009; Patterson 
& Abizaid, 2013). This study also noted that CRS-induced 
moderate changes to glycemic control which appeared to 
be dependent on the diet. Control-fed mice showed evi-
dence of hyperglycemia in response to CRS which has 
been reported previously in similar models (Zardooz 
et al., 2006; Zheng et al., 2018). Interestingly, non-stressed 
control mice showed significant improvements in fasting 
plasma glucose and glycemic control during the same 
period resulting in elevated levels of fasting glucose in 
the Control+CRS group at the experimental endpoint. 
The reasons for this improvement in the control group 
is unclear but may be related to habituation to handling 
and the repeated GTT procedure resulting in a loss of 

stress-induced hyperglycemia prior to assessment (Bates 
et al., 2008; Ghosal et al., 2015; Girotti et al., 2006).

Results from the present study also suggest that CRS 
may alter metabolic dysregulation in DIO by improving 
body weight and glycemic control. Food consumption was 
not assessed in the current study, however the improved 
metabolic control is likely the result of CRS-induced ap-
petite suppression and/or an increased metabolic rate and 
consequent weight reduction in the WD animals (Rabasa 
et al., 2011). Interestingly, while a reduction in food intake 
and body weight may have been a confounding factor to 
improvements in metabolic parameters, WD+CRS exhib-
ited marked improvements to glycemic tolerance (~15%) 
with minimal changes in body weight (~5%). Indeed, at the 
study endpoint, relatively small (~2.4%) differences in the 
body weights of the WD and WD+CRS animals resulted in 
more pronounced differences in glucose tolerance (~10%). 
The current data does not suggest a synergistic adverse ef-
fect of a WD and CRS on glucose homeostasis, but instead 
supports a mild protective effect in WD-fed animals with 
impaired glucose tolerance similar to that documented by 
Packard et al. (2014).

F I G U R E  7   Postischemic functional 
outcomes in Langendorff perfused hearts. 
(a) Recovery of LVDevP; (b) relationship 
between LVDevP and GTT area under 
the curve in WD mice only (±CRS); 
(c) relationship between LVDevP and 
endpoint body weight in WD mice only 
(±CRS); (d) recovery of left ventricular 
diastolic pressure; (e) recovery of +dP/
dt max; (f) total time in ventricular 
fibrillation throughout reperfusion. 
Recovery values were determined 
45 min into reperfusion. Data expressed 
as means ± SD (n = 5–8). A two-way 
ANOVA followed by a Sidak post hoc was 
used for statistical analysis. CRS, chronic 
restraint stress; GTT, glucose tolerance 
test; LVDevP, left ventricular developed 
pressure; WD, western diet. $ represents a 
significant main effect of the intervention. 
A linear regression was used to determine 
the statistical relationship between 
LVDevP recovery and GTT-AUC and body 
weight in WD groups
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This finding is contrary to several studies (Du Toit et al., 
2020; Fu et al., 2009; Pereira et al., 2016; Sousa Rodrigues 
et al., 2017), but corroborates several others (Bates et al., 
2008; Bruder-Nascimento et al., 2013; Finger et al., 2012; 
Garcia-Diaz et al., 2007; Kai et al., 2000; Packard et al., 
2014), and highlights the general lack of consistency in 
the effects of chronic stress on metabolic dysregulation. 
Habituation to the CRS and the loss of stress-induced hy-
perglycemia may also explain the findings observed in the 
current study (Grissom & Bhatnagar, 2009; Rabasa et al., 
2015). Habituation to the CRS after the initial drop in body 
weight is supported by the absence of robust changes to 
corticosterone levels measured at study endpoint and our 
lack of changes to insulin in CRS-exposed groups which 
contrasts our previous work (Du Toit et al., 2020; Grissom 
& Bhatnagar, 2009). Furthermore, the strong association 
between body weight and circulating insulin levels seen 
in the control and diet groups was unchanged by the ex-
posure of these groups to CRS which may suggest that the 
stressor was no longer impacting systemic metabolism 
and physiology. Taken together, varied outcomes when 
assessing DIO and stress may reflect the temporal char-
acteristics of stress-induced metabolic regulation or the 
impact that different stressors play in the stress-response 
(Cavigelli et al., 2018; Finger et al., 2012; Zardooz et al., 
2006). The relevance of these stress-induced metabolic 
differences on cardiovascular outcomes is still unknown, 
however it raises questions regarding the efficacy of tra-
ditional metabolic risk factors for cardiovascular disease 
(CVD) within the context of an active stressor that is met-
abolically disruptive or a habituated stressor.

4.2  |  Effect of a WD and CRS on 
locomotion and exploratory behavior

DIO has been shown to influence cognition and induce 
anxiety-like behavior (Andre et al., 2014; Pini et al., 2017), 
however mechanisms underpinning these effects are in-
completely characterized. In the current study, the WD 
had no effect on total locomotion, consistent with prior 
studies (Garcia-Diaz et al., 2007; Santos et al., 2018). A 
modest decrease in CSD and CSE was observed in re-
sponse to the WD, indicative of anxiety when confronted 
with the open-field arena (Prut & Belzung, 2003). This 
support prior evidence that high-fat and high-sucrose diets 
promote anxiety-like behavior in rodents (Eudave et al., 
2018; Rebolledo-Solleiro et al., 2017). All groups showed 
an increase in locomotion in the OFT conducted after the 
4-weeks of CRS. This improvement may again be a conse-
quence of habituation to the experimental testing arena 
resulting in a generalized increase in locomotion in the 
novel open field environment. CRS mice showed a greater 

increase in locomotion during this period. Mild stressors 
have been shown to promote hyperactivity in the OFT 
(Garcia-Diaz et al., 2007; Zimprich et al., 2014), whereas 
social and severe stressors induce a loss of locomotor ac-
tivity (Bowman et al., 2002; Guedri et al., 2017). Despite 
this stress-induced hyperactivity, exploratory behavior 
was unaltered by CRS in either dietary group, suggesting 
that the current homotypic stressor protocol (restraint 
stress) is insufficient to induce overt behavioral changes 
typical of chronic stress-induced anxiety. Additional be-
havioral assessments of learned helplessness, learning 
and memory, and social activity may have revealed more 
subtle long-term alterations to cognition and behavior in-
duced by the CRS (Huang et al., 2015; Wood et al., 2008; 
Zain et al., 2018).

4.3  |  Effect of a WD and CRS on 
myocardial tolerance to I/R

Myocardial tolerance to an I/R insult is highly dependent 
on normal metabolism to ensure cell survival. Insulin re-
sistance in murine obesity is associated with detrimental 
changes to the cardioprotective reperfusion injury sal-
vage kinase pathway activated in response to a I/R insult 
(Donner et al., 2013; Poncelas et al., 2015). In support of 
this, the current study noted that LVDevP recovery was in-
versely correlated with body weight and glucose tolerance. 
A limitation of the current study was that a subset of mice 
used in the Langendorff perfusion experiments failed to 
respond to the WD-feeding and did not present with pro-
nounced obesity or metabolic dysregulation. This subset 
of animals increased the variability of heart perfusion data 
of the WD-fed animals. The absence of statistically signifi-
cant differences in the cardiac outcomes between groups 
contrasts with our previous work (Donner et al., 2013; Du 
Toit et al., 2020; Toit et al., 2008) and is likely due to the 
sample size and number of animals in our WD groups 
that were non-responders to the obesogenic diet. Despite 
this variability in cardiac outcomes, the study did observe 
more prolonged reperfusion fibrillation in the WD-fed 
animals which is consistent with evidence showing that 
metabolic diseases promote arrhythmogenesis (Albarado-
Ibanez et al., 2013). Similarly, while no significant dietary 
effect was noted for LVDevP recovery, dP/dt max recovery 
was reduced in WD groups and supports a loss of pressure 
recovery in DIO animals. The heart-body-weight ratio was 
unchanged in WD groups suggesting that the increase in 
heart weight is due to the greater body weight rather than 
hypertrophy. No additive effect of CRS was observed in 
these two-perfusion metrics.

Interestingly, CRS did not induce significant changes 
in LVDevP recovery on its own or in combination with 
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WD feeding. This was unexpected since our previous 
work demonstrated a detrimental synergistic effect of 
these two interventions (Du Toit et al., 2020). Two con-
siderations may explain this difference. The first is that 
the current study utilized a longer CRS protocol than our 
previous work which facilitated a more marked habitua-
tion to the stressor and a reduction in the physiological 
response (Grissom & Bhatnagar, 2009). Second, the cur-
rent study did not obverse synergistic disruption to met-
abolic homeostasis in the combined intervention group 
which resulted in comparable insulin levels between WD 
groups and evidence of improved glycemic handling in 
WD+CRS groups. Both factors could have resulted in 
the lack of changes to reperfusion LVDevP in WD+CRS. 
However, one would expect that there would still be alter-
ations to LVDevP recovery in the WD+CRS group as a re-
sult of stress-induced injury and remodeling that occurred 
prior to habituation (Manukhina et al., 2021; Zhang et al., 
2019). Despite this, there remained evidence of postisch-
emic contractile dysfunction in the hearts of mice exposed 
to CRS as indicated by the elevation in reperfusion EDP. 
Furthermore, there was evidence of disruption to the rela-
tionship between metabolic and postischemic functional 
outcomes in mice exposed to WD+CRS compared to WD 
only mice. This is most likely due to functional recovery 
being affected by additional stress pathways (autonomic 
nervous system, inflammatory signaling, and oxidative 
stress) activated by CRS (Adameova et al., 2009; Dorn 
et al., 1997; Mercanoglu et al., 2008).

Although CVD is strongly associated with both met-
abolic and stress-related mood disorders, few studies as-
sess the interactive effects of these co-morbidities on the 
heart and its response to ischemic insult (Mottillo et al., 
2010; Nicholson et al., 2006). Our understanding of this 
relationship is further complicated by mode of stress in-
duction (frequency, predictability, and type) that can re-
sult in diverse metabolic and cardiac outcomes (Crestani, 
2016; Patterson & Abizaid, 2013). This raises questions 
about the relationship between metabolic disturbances 
and CVD outcomes under different physiological stress 
states (i.e., active vs. habituated). In our previous work, 
we noted that a short stressor (30 mins/day for 3 weeks) 
after a 10-week WD diet feeding program synergistically 
disrupted metabolism culminating in worsened ischemic 
tolerance (Du Toit et al., 2020). The current study did not 
observe synergistic effects on metabolism, but still noted 
limited myocardial dysfunction in CRS-exposed mice 
likely due to effects not related to metabolism. Taken to-
gether, this supports a role for stress-induced insulin resis-
tance to worsen ischemic tolerance in DIO, however, there 
may be additional mechanisms contributing to diverse 
outcomes. Agrimi et al., noted significant reductions to 
echocardiography-derived ejection fraction and fractional 

shortening in obese C57BL/6J mice exposed to a chronic 
stressor (Agrimi et al., 2019). The authors also noted ev-
idence of elevated myocardial fibrosis and apoptosis and 
attribute the changes to the synergistic depletion of brain-
derived neurotrophic factor signaling. Unfortunately, the 
authors did not assess corticosterone or markers of me-
tabolism which makes it difficult to ascertain the degree 
of stress activity or whether this loss of neurotrophic sig-
naling occurred concurrently with dysregulated metabo-
lism. Within a clinical setting, the temporal dynamics (i.e., 
active, habituated, maladaptive) and characteristics (fre-
quency, predictability, and type) of a stressor may result in 
variable cardiometabolic profiles in individuals with obe-
sity that may not be accurate representations of current 
and future CVD and ischemic intolerance risk. Further 
research is warranted into the temporal relationship be-
tween metabolism and myocardial ischemic risk in mul-
timorbidities to further our understanding of CVD risk.

4.4  |  Study limitations

Several limitations and constraints impacted our find-
ings that are worth noting. The presence of low-weight 
WD-fed mice and CRS mice that possibly habituated to 
the stressor limited the robustness of the model and our 
findings. While we were still able to investigate the inter-
active effects of both interventions on cardiometabolic 
and behavioral parameters, the heterogeneity and mod-
est changes to study outcomes hindered our ability to 
investigate potential mechanistic pathways of interest. 
Furthermore, while the OFT is an established tool for the 
assessment of anxiety-like behavior in mice, we were un-
able to fully characterize the behavioral phenotype of WD 
and CRS mice to determine whether changes occurred 
to additional behavioral and cognitive indices such as 
learned helplessness, learning and memory, motor co-
ordination, or social interactions. The current study was 
unable to assess the combined effects of WD and CRS 
on fasting metabolic markers which may have provided 
more information regarding the basal metabolic state of 
these animals Moreover, use of an ex vivo Langendorff 
model to assess myocardial ischemic tolerance may have 
mitigated the impact of systemic and neural pathways on 
functional recoveries. Lastly, there is strong evidence to 
suggest sex-specific differences in both the stress-response 
and cardiovascular outcomes (Bangasser & Wiersielis, 
2018; Möller-Leimkühler, 2007). We are therefore unable 
to determine if female mice would exhibit the same stress-
induced changes to metabolic and myocardial ischemic 
parameters with varying stress paradigms. With these 
limitations in mind, future research should investigate 
the potential interactions between chronic stress and DIO 
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on the relationship between metabolism and myocardial 
function to determine mechanisms of action and the risk 
profile of varying stress-phenotypes (i.e., active stressor vs. 
habituated; physical vs. psychological).

5   |   CONCLUSION

In summary, mild CRS improved body weight and glu-
cose tolerance in the WD animals but had no effect on 
these measures in control diet-fed animals. Despite im-
provements to body weight and glucose tolerance, CRS 
did not improve myocardial tolerance to I/R and selec-
tively worsened postischemic contractility. The combi-
nation of WD+CRS did not elicit the typical association 
between glucose intolerance and exacerbated ischemic 
injury. This highlights a potential limitation of metabolic 
markers in determining CVD risk in cases of mild chronic 
stress and obesity. Furthermore, while mild stressors may 
be clinically relevant, application of chronic stressors to 
which the animals do not habituate (such as heterotypic 
stressors) may be necessary to reveal potential synergis-
tic effects between DIO and stress-related disorders (Zhu 
et al., 2014). Further research is required to delimitate and 
characterize the temporal relationship between the stress-
response and cardiometabolic parameters. We also need 
to determine what the relative contributions of metabolic 
dysregulation and stress-induced neuro-endocrine over-
activity and inflammation are to CVD progression and is-
chemic intolerance in multimorbid conditions. Although 
this study has its limitations, it provides evidence for po-
tential interactions between chronic psychological stress 
and a WD in modulating CVD outcomes and highlights 
the complexities of the stress-response that warrant fur-
ther research.
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